Chapter 2
Vectors and Matrices
Part 3
Scalar operations

- Numerical operations performed on every element in a vector or matrix

- **Scalar multiplication** - multiply every element by a scalar

  ```
  >> [4 0 11] * 3
  ans =
  12  0  33
  ```

- **Scalar addition** - add a scalar to every element

  ```
  >> zeros(1,3) + 5
  ans =
  5  5  5
  ```
Matrix Addition/Subtraction

- **Array operations** on 2 matrices A and B:
 - Applied element-by-element (term-by-term)
 - Matrices must have **same dimensions**
 - Matrix addition: \(A + B \)
 - Matrix subtraction: \(A - B \) or \(B - A \)

```plaintext
>> A = [ 1 1 1 ];
>> B = 1:3 ;
>> A + B
ans =
    2   3   4
>> B = 1:4 ;
>> A + B
Error using +
Matrix dimensions must agree
```
Matrix Multiplication

- Matrix A’s number of columns must be same as B’s number of rows.
- Matrix multiplication (mtimes): \(C = A \times B \)

\[
\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & 2 \\
\end{array}
\begin{array}{ccc}
1 & 3 \\
2 & 0 \\
\end{array}
\begin{array}{cc}
5 & 4 \\
10 & 8 \\
\end{array}
\]

- \(C_{11} = A_{r1} \times B_{c1} \)
- \(C_{12} = A_{r1} \times B_{c2} \)

- \(1 \times 3 + 1 \times 0 + 1 \times 2 \rightarrow 5 \)
- \(1 \times 3 + 1 \times 0 + 1 \times 1 \rightarrow 4 \)
Matrix Multiplication

\[
\begin{bmatrix}
3 & 8 & 0 \\
1 & 2 & 5 \\
0 & 2 & 3 \\
\end{bmatrix}
\times
\begin{bmatrix}
1 & 2 & 3 & 1 \\
4 & 5 & 1 & 2 \\
0 & 2 & 3 & 0 \\
\end{bmatrix}
=
\begin{bmatrix}
35 & 46 & 17 & 19 \\
9 & 22 & 20 & 5 \\
\end{bmatrix}
\]

The 35, for example, is obtained by taking the first row of A and the first column of B, multiplying term by term and adding these together. In other words, \(3*1 + 8*4 + 0*0\), which is 35.
Dimensions - * Matrix Multiplication

- NOT an array operation (not term by term)
- Number of **columns** of A same as number of **rows** of B
- If matrix A \(m \times n \), then matrix B must \(n \times p \)
 - Math notation: \([A]_{m \times n} [B]_{n \times p}\)
 - **Inner dimensions** must be the same
- Resultant size of matrix C has same number of **rows** as A and the same number of **columns** as B
 - **Outer dimensions**: \(m \times p \)
 - Math notation: \([A]_{m \times n} [B]_{n \times p} = [C]_{m \times p}\)
Matrix Multiplication

\[C(i,j) = A(i,:) \times B(:,j) \]

- The elements of matrix C are found as follows:
- \(C(i,j) \) is the inner product of the \(i \)th row of A with the \(j \)th column of B.
- Sum of products of corresponding elements in the rows of A and columns of B,

\[C_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \]
“isequal()” Function (built-in)

- **isequal(v1, v2)**
 - if array elements are equal returns 1 (true) (or 0 – false)

```matlab
>> v1 = 1:4;
>> v2 = [1 0 3 4];
>> isequal( v1,v2 )
ans =
    0
>> v1 == v2
ans =
    1   0   1   1
>> all(v1 == v2)
ans =
    0
```
Array \.* Multiplication (Element-wise)

- **Array operations** on 2 arrays A and B:
 - Applied element-by-element (term-by-term)
 - Arrays must have **same dimensions**
- Array multiplication (times): \(A \.* B \)

\[
\begin{align*}
\texttt{>> A} & = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}; \\
\texttt{>> B} & = \begin{bmatrix} 2 & 9 & 4 \end{bmatrix}; \\
\texttt{>> C} & = A \.* B \\
\texttt{C} & = 2 \ 0 \ 8
\end{align*}
\]
Array \(\cdot^\wedge\) Exponentiation (Element-wise)

- Array operations on 2 arrays \(A\) and \(B\):
 - Applied element-by-element
 - Array exponentiation: \(A \cdot^\wedge 2\)

\[
\begin{align*}
&\text{>> } A = [1 \ 2 \ 3] ; \\
&\text{>> } B = A \cdot^\wedge 2 \\
&B = 1 \ 4 \ 9
\end{align*}
\]
Array operation Division (Element-wise)

- **Array operations** on 2 arrays A and B:
 - Applied element-by-element
 - Arrays must have **same dimensions**
 - **Cannot divide matrices** using `/`
 - Array division: $A \div B$, $A \backslash B$

```
>> A = [ 1 2 3 ];
>> B = [ 5 6 2 ];
>> C = B ./ A
C =
    5.0000    3.0000    0.6667
```
Element-wise operators

- | and & are used for matrices
 - go through element-by-element
 - return logical 1 or 0
- || and && are used for scalars
Logical Vectors

• Using relational operators on a vector or matrix results in a **logical** vector or matrix

• Use **this** to index into a vector or matrix

 • Only if index vector is type **logical**

```matlab
>> vec = [ 44 3 2 9 11 6 ];
>> logv = vec > 6
logv =
    1     0     0     1     1     0
>> vec( logv )
ans =
    44     9    11
```
Logical built-in functions

- **any** - returns true, if anything in input argument is true
- **all** – returns true, if everything in input argument is true
- **find** - receives finds locations and returns indices

```matlab
>> vec = [ 44 3 2 9 11 6 ];
>> find(vec > 6)
ans =
    1    4    5
```
True/False

- **false** equivalent to `logical(0)`
- **true** equivalent to `logical(1)`
- **false** and **true** are also functions that create matrices of all **false** or **true** values

```
>> A = true(4);
A =
1 1 1 1
1 1 1 1
```
Common Pitfalls

• Attempting to
 • Create a matrix with unequal number of values in each row
 • Use array of double 1s and 0s to index into an array (must be logical)
• Always use | and & when working with arrays
• Always use || and && with scalars
• Confusing matrix multiplication and array multiplication
• Matrix multiplication operator *
 - Inner dimensions must agree
• Array operations (multiplication, division, exponentiation)
 • Performed term by term (arrays must have same size)
• Operators: .* ./ .\ .^
Programming Style Guidelines

- Use subscripted indexing: `v([1 3 6])`, rather than linear index: `v(3)`

- Do not assume dimensions of array, use functions:
 - `length` or `numel` - determine number of elements in vector
 - `size` for matrix:
    ```matlab
    len = length(vec);
    [r, c] = size(mat);
    ```

- Use `true` instead of `logical(1)` and `false` instead of `logical(0)`, especially when creating arrays