So far, we have used Python to get you familiar with basic coding concepts, such as variables and assignments. Today we will be using JavaScript to apply the same knowledge to create simple GUI messaging. GUI stands for graphical user interface that uses icons and other visual designs.

A. JavaScript in HTML
We’ve now spent a couple of weeks learning HTML and how to use it to create basic web pages.

I. HTML Pros:
 a. Good for displaying information (like a brochure)
 b. Easy to use

II. HTML Cons:
 a. Can’t really interact dynamically with the user
 b. Can’t perform calculations

JavaScript is a solution to most of the HTML Cons issues, and in this lab, we will outline many of the concepts behind JavaScript to make your webpages even better.

Step 1:
Create a new folder named Lab7 in your CSE3 folder. Open up Notepad++ and save your file in that folder, named IntroJS.html

Step 2:
Create a basic HTML skeleton. Please refer to the other labs if you do not remember how to write the HTML skeleton. In the head tags, set the title to “JavaScript Trees” using the title tags. Put a pair of <center> tags as the first thing in your <body> tags. In order to use JavaScript in your HTML, you have to put all of that code in between a pair of script tags. Place these tags inside of the <center> tags in your <body> tags:

<script type = “text/javascript”> </script>

Step 3:
Inside of the script tags, we are going to be writing JavaScript code, not HTML code. We will start by creating some variables and practicing with JavaScript so that you can familiarize yourself with it before creating the webpage for your lab.

Variables in JavaScript, for the most part, operate similarly to variables in Python. They can be assigned a numeric, string, or Boolean value and each unique variable can hold one value at a time. However, there are two key differences with how variables are handled in JavaScript:
1. To declare a variable in JavaScript, you **MUST** have the keyword `var` before your variable name.
2. All variable assignments/declarations **MUST** end with a semi-colon. As you will see in later examples, the same applies for almost every code you write in JavaScript.

Below are examples of valid variable usage in JavaScript:

```javascript
var object; // Valid declaration of var "object"
var name = "Emily"; // Valid string assignment of var "name"
var age = 22; // Valid int assignment of var "age"
var isTrue = true; // Valid boolean assignment of var "isTrue"
```

Below are examples of invalid variable usage:

```javascript
var item; // Invalid declaration -- missing semicolon
width; // Invalid initial declaration -- missing "var" keyword
length = 5; // Invalid initial declaration -- missing "var" keyword
var height = 10; // Valid int assignment of var "height"
var height = 11; // Invalid -- cannot redefine using the same var name
```

Step 4:
Let's use JavaScript to figure out your Spring Break plans.

I. Create 3 variables: **name**, **age**, **travelPlans**, **endFinal**, **vacationLocation**
 a. You can have each variable declared on its own line with the keyword `var`:

   ```javascript
   var name;
   var age;
   var travelPlans;
   var endFinal;
   var vacationLocation;
   ```

 b. Or you can combine them on one line and separate them with commas like so:

   ```javascript
   var name, age, travelPlans, endFinal, vacationLocation;
   ```

II. Now we can assign values to **name** and **age**. Go ahead and put down your own name and age.
 a. **name** is of type string, so we have to put its value inside quotation marks

   ```javascript
   name = "Emily";
   ```

 b. **age** is a number, so no quotations are needed.

   ```javascript
   age = 22;
   ```

Step 5:
Now that we have all of our information, we need to display it somehow. In JavaScript, there are **TWO** ways to display info on a webpage:

1. `document.write();`
2. `alert();`

`document.write()` prints out information directly onto the webpage, whereas `alert()` shows the information in a pop-up box. Use `document.write()` to write **name** and `alert()` to write **age**:
B. Operator Overloading
We all know what the plus sign (+) does right? It adds two numbers together. But, in JavaScript, it can do much more. There are many things we want computers to do and limited symbols on the keyboard, so to overcome this, we can overload a symbol by having it do different things.

I. A plus sign can:
 a. **Add two numbers together**
 i. $5 + 5 = 10$
 b. **Concatenates two strings together** (think of concatenating as stapling 2 strings together to get 1 bigger string)
 i. “Super” + “Bowl” = “Super Bowl”

 NOTE: the space after the letter ‘r’ in “Super”. If you had “Super” + “Bowl”, then JavaScript would do “Super” + “Bowl” = “SuperBowl”.
 c. **Concatenates a string and a number together** (when it sees a string and a plus sign, JavaScript will just slam everything together):
 i. “Super” + 8 = “Super 8”
 ii. “Super” + 47 = “Super 47”
 iii. 6.7 + “Super” = “6.7Super”
 d. If there are more than 2 items in the expression, follow the **order of operations**:
 i. 5.5 + 5.5 + “Super” = “11Super”
 ii. 5.5 + (7.4 + “Super”) = “5.57.4Super”
 iii. “Super” + 5.5 + 7.4 = “Super5.57.4”

C. Interacting with the program
So far, we have learned how to use variables, calculate values, and display information on the webpage. We haven’t yet shown how a user can INTERACT with the program.

To get information from the user, we can use the **prompt** function to ask for the user’s input.

Step 1:
Modify your program to ask for the user’s **name** and **age** using the **prompt** function:

```javascript
name = prompt("What is your name?");
age = prompt("How old are you?");
```

Try it and see what happens!
Step 2:
Use concatenation to create a sentence with the name and age; display it with document.write()

I. Texts that are contained within quotation marks are considered to be literals. This means that whatever is inside the quotations is the exact text that gets printed.

II. name and age are considered to be variables, so they must go OUTSIDE the quotation marks. This way, JavaScript knows to look for their assigned value instead of just printing the texts “name” and “age”.

```javascript
document.write("My name is " + name + ". I am " + age + " years old.");
```

When you run the program, the user should be prompted to input their name and the year that they were born in. Once they do that, the webpage should print the appropriate sentence containing the user’s name and age.

D. Conditional Statements
Conditional statements allow you to make choices and do different things with your code depending on the situation. You can think of conditional statements as acting like branches in a flow chart or decision tree.

Remember **if statements** from Python? JavaScript (and all other real programming languages) also contains **if statements** and they function pretty much the same way. **NOTE:** Unlike Python, JavaScript utilizes **curly braces** and does not use colons.

As a review, **if statement** checks if the part inside the parentheses (called the **condition**) is true.

I. If the **condition** is **TRUE**, then the code inside the **first** set of curly braces is executed.

II. If the **condition** is **FALSE**, then the code inside the **second** set of curly braces (underneath the else statement) is executed.

Step 1:
Let’s add **if statements** to our own code! You might notice that Spring Break is coming up soon. Let’s figure out your plans using JavaScript.

I. Prompt the user to ask them if they plan on staying in San Diego during Spring Break.

```javascript
travelPlans = prompt("Do you plan on staying in San Diego during Spring Break?");
```
II. Prompt the user to ask them when their final exams end.

```javascript
endFinal = prompt("What day is your last final exam?");
```

III. If their final exam day is on Friday, their Spring Breaks will be one-week long. Otherwise, it might be longer than one week! Let’s update our document with this information.

```javascript
if (endFinal == "Friday")
{
    document.write("Your Spring Break will be one week long.");
}
else
{
    document.write("Your Spring Break might be longer than a week.");
}
```

IV. If they plan on staying in San Diego, then we set value of vacationLocation to equal “San Diego”. Otherwise, we need to ask them where they plan on staying.

```javascript
if (travelPlans == "no")
{
    vacationLocation = prompt("Where do you plan on staying?");
}
else
{
    vacationLocation = "San Diego";
}
```

V. Then, we are going to update our document with this new information.

```javascript
document.write("Enjoy your Spring Break in " + vacationLocation + "! You deserve it.");
```

NOTE: Recall the difference between equals signs. The ‘==’ (double equals) and ‘=’ (single equals) are the main two we will use. ‘==’ is used for COMPARING two values and ‘=’ is used for ASSIGNING values on the right-hand side to the variables on the left-hand side.

Step 2:
Write an **if/else** statement to check if:

I. Your age is greater than or equal to 21. If this is true, output “You’re OK to drink!”

II. Your age is less than 21. If this is true, output “You should stick with water.”

III. Try it with different age values to make sure it works!
The if/else statement above can be illustrated using the following decision tree diagram:
E. **Putting it all together**

Task: We’re going to write a new program to ask users whether they are graduating this quarter and what their plans are for after graduation. It will output different questions/responses depending on how the person answers each question.

Step 1:
Create a new file called `Graduation.html` in Notepad++ and save it in your Lab7 folder.

Step 2:
Using what you’ve already learned, follow along with your TA to create a program that:

1. Creates a new “graduation” variable.
2. Ask users if they are graduating this quarter.
3. If the user is graduating, the program will ask them if they are planning on going to grad school.
4. If the user is not graduating, the program will ask them what year they are currently in: 1st, 2nd, 3rd (and beyond).
5. Respond with some comment about their answer.
Step 2:
Use statements of the **if/else if/else** structure to create the following program:

```javascript
var isGraduating = prompt("Are you graduating this quarter?");

if (isGraduating == "yes") {
  var goingGradSchool = prompt("Are you planning on going to grad school?");

  if (goingGradSchool == "yes") {
    document.write("Congratulations! I hope you find a job that you love!");
  } else { // goingGradSchool == "no"
    document.write("Congratulations! All your hard work will pay off!");
  }
} else { // isGraduating == "false"
  var collegeYear = prompt("What year are you in?");

  if (collegeYear == "1") {
    document.write("You still have a lot of time left, enjoy yourself!");
  } else if (collegeYear == "2") {
    document.write("Hope your second year is going well. You're halfway there!");
  } else { // collegeYear == "3", "4", ...
    document.write("You are almost done!");
  }
```

Step 3:
Use the question structure above and the JavaScript template below to complete the program.
NOTE: Conditional statements and strings are case-sensitive so be careful with your answers.
F. Putting it Online

Step 1:
Modify your CSE3Page.html to include a link to your Graduation.html page.

Step 2:
Put everything online and get checked off.

Checkoff: Go to your homepage via the class webpage and demonstrate to the TA/Tutor that your Graduation.html is complete. You must run through the program and show that **ALL FIVE** branches of your decision tree work.

REMEMBER to drag your CSE3 folder into the WHITESPACE inside your public_html folder!