David’s Super-Marginally-Awesome GDB Guide for CSE 12

Setting Breakpoints

break location

Sets a breakpoint at a specific location inside your program. A valid location could be a function
name (e.g. break main, break someFunc), a line number (e.g. 30, 50), a filename:linenumber
(e.g. hw0.c:30), or an offset from the current line (e.g. break +2, break -4)

break location if
cond

This sets a breakpoint a specific location but it will break only if the condition is true. For
example, you have a loop and you only want to break when the loop counter is greater than a
specific value (say 9000 in this case):

for (inti=0;i<10000; i++){ ... }

You can use the command break location if i > 9000 to accomplish this. If you want to modify an
existing breakpoint to have a condition, use the condition command inside gdb.

tbreak location

Sets a temporary breakpoint in your code. This will automatically remove itself after stopping at
the location.

info break

Show all the breakpoints currently set inside your code as well as some additional information
(such as how many times a breakpoint was hit).

delete break#

Delete a breakpoint that you had previously set using break. Get the break# from the info break
command. Also if you don’t want to permanently delete breakpoints you can use the enable and
disable command (read the GDB docs).

rbreak substr

A good to know command. This will break on all functions matching a substring substr. So if
there were functions doMath, doSleep, doSomething then typing in rbreak do will break on all
three of those functions.

ignore break# n

Don’t stop at a particular breakpoint specified by break # until it has hit n additional times.

continue n

The “oops, | didn’t mean to break here yet” command. Continue executing your program. If you
provide an n, it will instruct gdb to ignore the current breakpoint until it has hit n additional
times.

Now that I've hit a breakpoint....

nextn

Executes the next line of the program that is displayed on the screen currently. If the next line is
a function call, this will skip over the function. If you provide an integer value for n it will execute
the next command n times.

step n

Executes the next line of the program that is displayed on the screen currently. If the next line is
a function call, this will jump into the function. If you provide an integer value for n it will
execute the step command n times.

finish

The “oops, | didn’t mean to step into the function” command. Continue executing your program
until the end of the function (at which point it will display return values and other goodies).

print /f variable

This command prints out a variable to the screen (the /f is optional). This is different from
examine because it takes into account what type the variable is. Examine provides lower level
examination options. Also you can provide format flags to control how it will be displayed out to
screen. These are valid values for f.

X — print as hex

d — print as decimal number

u — print as unsigned decimal number
o — print as octal

t — print as binary

¢ — print as a single character

f — print as float

s — print as string

SPECIAL AWESOMENESS: You can change variables. So say if you’re working on bank software,

you can do something like this: print account_balance = 100000000 to change variables on-the-
fly.

x /nfu addr

This command has nearly the same functionality as print. However you can specify the number n
(default = 1) of u (default = 4) sized chunks of memory and specifying the f format to display it in
(default = x [hex]). These are some valid values for u:

b — byte (1 byte duh on x86)

h — halfword (2 bytes on x86)

w —word (4 bytes on x86)

So typing in x/10cb a_string_var would print out 10 characters of the string a_string_var.

display /f variable

If you're looking a specific variable frequently, you may want to “pin” the value to the screen.
This works similarly to print. Use info display to show all displayed variables and use undisplay
display# (or delete display display#) to remove it. Similarly to enabling and disabling breakpoints,
you can use enable and disable commands to temporarily show/hide the value.

list Display 10 lines of code around the current line about to be executed. This is helpful in
determining where you are inside your code.

where Display the current traceback (aka the stack) for your program. This shows you which functions
you’ve called to get to the line that you are executing now.

up/down Goes to the previous/next stack frame. So lets say | have a function parent() that calls child(). If |

am currently stopped in child() and | want to examine variables inside the parent, | need to use
up to go to the parent’s stack frame and examine the parent’s variables. To go back, use down to
go back to child’s stack frame.

