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a b s t r a c t

A forecasting method for hourly-averaged, day-ahead power output (PO) from photovoltaic (PV) power
plants based on least-squares optimization of Numerical Weather Prediction (NWP) is presented. Three
variations of the forecasting method are evaluated against PO data from two non-tracking, 1 MWp PV
plants in California for 2011e2014. The method performance, including the inter-annual performance
variability and the spatial smoothing of pairing the two plants, is evaluated in terms of standard error
metrics, as well as in terms of the occurrence of severe forecasting error events. Results validate the
performance of the proposed methodology as compared with previous studies. We also show that the
bias errors in the irradiance inputs only have a limited impact on the PO forecast performance, since the
method corrects for systematic errors in the irradiance forecast. The relative root mean square error
(RMSE) for PO is in the range of 10.3%e14.0% of the nameplate capacity, and the forecast skill ranges from
13% to 23% over a persistence model. Over three years, an over-prediction of the daily PO exceeding 40%
only occurs twice at one of the two plants under study, while the spatially averaged PO of the paired
plants never exceeds this threshold.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

High renewable energy penetration grids are challenging to
balance due to inherently variable generation weather-dependent
energy resources. Solar and wind forecasting are proven methods
for mitigating resource uncertainty and reducing the need for
scheduling of ancillary generation. Several forecasting methodol-
ogies have been developed to target different forecast time hori-
zons [1].

Short-term forecasting (t < 1 h) is mainly based on sky imaging
techniques and time-series models, while satellite-based forecasts
achieve usable results for time horizons of 1e6 h [2e4]. Usually,
horizons larger than 6 h require numerical weather prediction
models (NWP) to generate accurate results, although there are
exceptions such as [5]. Recent advances in solar forecasting have
mainly covered intra-day resource forecasts, driven by advances in
sky image techniques and time-series modeling [6e16].

While intra-day forecasts are important for grid stability, day-
ahead forecasts are critical for market participation and unit
ra).
commitment. Current market regulations in many world regions
require day-ahead forecasts [17e19] and there are financial in-
centives to produce accurate forecasts [18]. Besides market partic-
ipation, day-ahead forecasts can also be useful for energy storage
dispatch [20,21]. In this paper, we focus on day-ahead forecasting of
power output from photovoltaic power plants in the American
Southwest.
1.1. Previous work

Most NWP models generate global horizontal irradiance (GHI)
at the ground level as one of the outputs, with some newer gen-
eration models now including direct normal irradiance (DNI).
Previous studies evaluated the accuracy of this GHI variable and
suggestedways to improve it, which havemostly focused on spatial
averaging and bias removal [22e28]. [22,27,29] showed that fore-
cast errors for all sky conditions can be reduced by averaging the
GHI forecasts from all NWP grid points within a set distance of the
target site. In addition [22], showed that the forecast performance
could be further improved through bias removal using a poly-
nomial regression based on the solar zenith angle and clear sky
index. [27] showed that a similar improvement can be achieved
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through Kalman filtering.
In contrast to our knowledge of the performance of day-ahead

GHI predictions, the application of these forecasts directly to pre-
diction of day-ahead power output (PO) of PV plants is poorly un-
derstood. There are currently less than a dozen published studies
that cover the subject of day-ahead PV PO forecasts, the majority of
which were published in the last 5 years. We summarize these
papers below and in Table 1. It is important to note that this lack of
knowledge is partly due to the difficulty of obtaining data from
operational PV plants, due to security restrictions and lack of data
infrastructure. However, data access should improve in the coming
years due to energy policies that require PO forecasting and
therefore necessitate the collection of PO data.

[30] applied the Danish Meteorological Institute's High Resolu-
tion Limited Area Model (HIRLAM) to forecast PO of 21 PV systems
in Denmark. The PV systems had a total rated power capacity of
1e4 kWp each and one year of data was used to evaluate the
forecasts. HIRLAM GHI forecasts were used as the main input to
autoregressive-based PO models. [31] also used HIRLAM to forecast
PO of a 6.2 kWp test site in Spain.

[29] and [32] used the European Center for Medium-Range
Weather Forecasts Model (ECMWF) to generate regional, PO fore-
casts in Germany. [29] only evaluated two months (April and July
2006) of forecasts for 11 PV systems in Southern Germany, while
[32] tested on 10 months (July 2009eApril 2010) of PO data from
approximately 400 representative PV systems.

[33] used an artificial neural network (ANN) to predict GHI in
Trieste, Italy. The predicted GHI was then mapped directly to PO
using the efficiency data of the studied 20 kWp PV system. Unfor-
tunately, PO forecast results were only reported for four consecu-
tive clear sky days in May 2009. Similarly [34], evaluated an
autoregressive-moving-average model with exogenous inputs
(ARMAX) forecast model that did not use NWP data as input.
However [34], only forecasted the day-ahead mean daily PO, rather
than day-ahead hourly values, for a 2.1 kWp PV system in China.

[27] forecasted PO of three small PV systems (6.72, 19.8 and
45.6 kWp) in mainland Canada, using the Canadian Meteorological
Centre's Global Environmental Multiscale Model (GEM). The GEM's
GHI forecasts were validated against ground measurements from
the SURFRAD Network in the United States. Spatial averaging of
300 kme600 km and bias removal via Kalman filtering were used
to improve the GEM forecast performance. Reported RMSE values
were in the range of 6.4%e9.2% of the rated power of the PV sys-
tems for a 1 year testing set (April 2008eMarch 2009).

[35] and [36] generated regional forecasts for Japan using Sup-
port Vector Regression (SVR) together with inputs from the
Japan Meteorological Agency's Grid Point Value-Mesoscale Model
Table 1
Summary of the current literature on day-ahead PO forecasting. “Type” refers towhether t
how much data was used in the forecast model evaluation.

Region NWP model Type

[30] Denmark HIRLAM Point
[31] Spain HIRLAM Point
[29] Germany ECMWF Regional
[32] Germany ECMWF Regional
[35] Japan GPV-MSM Regional
[36] Japan GPV-MSM Regional
[27] Canada GEM Point
[37] France ARPEGE Point
[38] France ARPEGE Point
[39] Spain WRF Point
[33] Italy N/A Point
[34] China N/A Point
(GPV-MSM). [35] used PO data from approximately 450 PV plants
from four regions (Kanto, Chubu, Kansai, Kyushu) that had a net
rated power of approximately 15 MWp while [36] used data from
273 PV plants spread over two regions (Kanto and Chubu), with an
approximate total power of 8 MWp.

[37] and [38] forecasted PO of 28 PV plants in mainland France
using Meteo France's Action de Recherche Petite Echelle Grande
Echelle (ARPEGE) model. [37] presented a deterministic forecast
that achieved a RMSE of 8e12% of the plant capacity over two years
of testing data (2009e2010) while [38] presented a probabilistic
forecast. Both methods used 31 variables from the ARPEGE,
including GHI as well as environmental conditions, e.g., tempera-
ture, humidity and precipitation. Unfortunately, no actual values
were reported for the PV plant power ratings or other technical
details, which limits analysis into the applicability of the results to
other PV plants and regions.

Most recently [39], forecasted the PO of five vertical-axis
tracking PV plants in Spain, using a nonparametric model based
on the Weather Research and Forecasting Model (WRF). The PV
plants ranged in size from 775 to 2000 kWp and the forecasts were
evaluated with data from 2009 to 2010. Quantile Regression For-
ests, a variation of random forests, was used to generate the PO
forecasts, with WRF variables such as GHI, temperature and cloud
cover as the inputs.

Although these studies all presented day-ahead PO forecasting
for PV plants, further research is still required, especially for sites in
the United States. In this study we seek to provide the following
contributions: (1) Introduction and evaluation of a PV PO forecast
model for the American Southwest, a region with both high solar
energy generation potential and a favorable political environment
for solar, especially in California. (2) Investigation of the interan-
nual forecast performance variability and (3) the occurrence of
severe forecasting errors, as they relate to large-scale renewable
energy integration. (4) Spatial smoothing through pairing of PV
plants in proximity. To achieve these goals, we systematically test
approaches and inputs to generate PO forecasts based on two
operational PV plants in Southern California.
2. Data

2.1. Ground data

Two sites are used to evaluate day-ahead forecasts of GHI and
PO: Canyon Crest Academy (CCA) and La Costa Canyon High School
(LCC). CCA (32.959�, �117.190�) and LCC (33.074�, �117.230�) are
both located in San Diego County, USA, and each feature 1MWpeak
(MWp) of non-tracking photovoltaic (PV) panels. The PV panels for
he forecast was for a single PV plant site or for an entire regionwhile “Testing data” is

PV plants

No. of sites Total capacity Testing data

21 ~100 kWp 1 year
1 6 kWp 10 months

11 Unknown 2 months
383 ~100 MWp 10 months
454 ~10 MWp 1 year
273 ~10 MWp 1 year

3 ~100 kWp 2 years
28 Unknown 2 years
28 Unknown 2 years
5 ~10 MWp 2 years
1 20 kWp 4 days
1 2 kWp 6 months
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both sites were installed in 2011 as part of a power purchase
agreement (PPA) between the San Dieguito Union High School
District and Chevron Energy Solutions.

Each site has two inverters, with the PV panels mounted above
the parking lots at a 5� incline. At CCA, the panels are split over two
parking lots, approximately 200 m apart and each with 500 kWp.
Due to the site's characteristics, the north parking lot panels face
(~20�) southwest, while the south parking lot panels face directly
south. Meanwhile, the panels at LCC cover a single parking lot and
face ~30� southwest.

Total PO from the PV panels at each site is available as 15-min
averages. Additionally, 15-min averaged GHI data is available from
co-located pyranometers. Fig. 1 illustrates the data availability for
both sites. For this study, the GHI and PO data are backwards-
averaged to hourly values and night values are removed, where
we define night as zenith angles (qz) greater than 85�. Note that the
maximum observed PO of CCA matches the nameplate capacity
(1 MWp), while the maximum observed PO of LCC peaks at
z0.8 MW, despite both sites using identical PV technologies. This
difference is due to the greater (~30�) southwest orientation of the
PV panels at LCC.
2.2. NWP data

We use forecasted variables from two publicly-available NWP
models: the North AmericanMesoscale Forecast System (NAM) and
the Regional Deterministic Prediction System (RDPS).
2.2.1. NAM
The NAM is a NWPmodel provided by the National Oceanic and

Atmospheric Administration (NOAA) on a z12 km � 12 km spatial
grid that covers the continental United States. Forecasts are
generated four times daily at 00Z, 06Z, 12Z and 18Z, with hourly
temporal resolution for 1e36 h horizons and 3 h resolution for
39e84 h horizons. Downward shortwave radiative flux (DSWRF)
[W/m2] at the surface, a synonym for GHI, is forecasted using the
Geophysical Fluid Dynamics Laboratory Shortwave radiative
transfer model (GFDL-SW) [40]. The NAM also forecasts total cloud
cover (TCDC) [%], where the entire atmosphere is treated as a single
layer.

In this study, NAM forecasts generated at 00Z were downloaded
from the NOAA servers and degribbed for September 2013 to
November 2014, for all nodes within 200 km of CCA and LCC. Fig. 2
shows the distribution of NAM forecast nodes over Southern
California.
Fig. 1. Availability of ground measurements of GHI and PO for CCA (left column) and LCC (r
2.2.2. RDPS
The Canadian Meteorological Centre generates the RDPS model

on a 10 km � 10 km spatial grid covering North America. As with
the NAM, RDPS forecasts total cloud cover (TCDC) as a percentage
for each grid element, not distinguishing between the layers of the
atmosphere. The operational RDPS model generates forecasts daily
at 00Z, 06Z, 12Z and 18Z with hourly temporal resolution. Only the
00Z forecasts are used in this study, to ensure fair comparison with
the NAM forecasts. RDPS GHI forecasts were not available.

3. Forecasting models

3.1. Persistence

We include a day-ahead persistence forecast of both GHI and PO
as a baseline. The persistence forecast assumes that the current
conditions will repeat for the specified time horizon. In other
words:

bytþt ¼ yt ; (1)

where bytþt is the forecasted value of some variable y, at a time
horizon of t from some initial time t. For day-ahead persistence,
t ¼ 24 h.

3.2. Deterministic cloud cover to GHI model

We use a modified version of the deterministic model from
Refs. [19,41,42] to derive GHI from cloud cover:

GHI ¼ GHICS½0:35þ 0:65ð1� CCÞ�; (2)

where CC is the TCDC (0¼ clear, 1¼ overcast) from the NWPmodel
and GHICS is the clear sky GHI from the airmass independent model
described in Refs. [43e45].

3.3. Effects of spatial averaging

Previous studies have shown that NAMGHI forecast error can be
reduced by spatially averaging the forecasts from all nodes within a
set distance of the target site [22,27]. The distance (d) in km be-
tween a site and a NAM node can be calculated using the spherical
law of cosines:

d ¼ arccos½sinðf1Þsinðf2Þ þ cosðf1Þcosðf2Þcosðl2 � l1Þ�R; (3)

where (øi, li) is the latitudeelongitude for a point i and R is the
ight column). The missing GHI data from LCC is due to a malfunctioning pyranometer.



Fig. 2. Map of Southern California, with the NAM grid points marked with gray dots. UC San Diego (UCSD; star), Canyon Crest Academy (CCA; triangle) and La Costa Canyon (LCC;
square) are also marked on the map. The area to the lower left is the Pacific Ocean, with Mexico shown in the bottom right.
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radius of the Earth (6371 km). For both CCA and LCC, there are
approximately 50 NAM nodes with 50 km, 200 nodes within
100 km, and 800 nodes within 200 km.

Fig. 3 shows the effect spatial averaging of the NAMGHI GHI
forecasts for CCA compared to using only the NAM node closest to
the site, i.e., the naive node choice. The NAM forecasts from the
available data set (September 2013eNovember 2014) are grouped
into bins based on the clear sky index (kt),
Fig. 3. Effect of spatial averaging the NAMGHI GHI forecasts for CCA September
2013eNovember 2014. Naive refers to the NAM node physically closest to the site,
while 50 km, 100 km, and 200 km are the unweighted average forecasts of all nodes
within each search radius. Each marker represents the average RMSE of all forecasts
generated for each kt bin, i.e., each group of sky conditions.
kt ¼ GHI
GHICS

; (4)

which provides a measure of the sky conditions during the fore-
casted time period (kt / 0: overcast, kt / �>1: clear). Then, the
root mean square error (RMSE) is calculated between the forecasts
in each kt bin and the ground truth, and averaged to produce one
RMSE value per kt bin. The result is that spatial averaging reduces
the RMSE of the forecasts for all sky conditions, as compared to the
naive node choice. This is consistent with results presented in
previous work, e.g. Refs. [22,27].

Hereafter, we will report results for the naive NAM forecasts
(NAMGHI, NAMCC) as well as the 100 km spatially averaged versions
(NAM*

GHI, NAM
*
CC). 100 km is chosen over 200 km as there is a

negligible difference in error between the two. Also, the 100 km
case requires approximately 25% the NAM grid points as the
200 km case, and therefore has lower storage and computational
requirements.

3.4. GHI to PO model

As the PV panels at both sites are non-tracking, we assume that
there exists a linear function f($) that can map GHI to PO. Fig. 4
illustrates the relationship between GHI and PO for CCA over a
full year (September 2013eNovember 2014), with a reference
linear fit included (R2 ¼ 0.97). The high R2 value (>0.95) indicates
that a linear mapping between GHI and PO is not an unreasonable
assumption.

Formally, we define a linear function f(x;w) as:

f ðx;wÞ ¼
Xn
j¼0

wjxj ¼ wTx; (5)



Fig. 4. GHI vs. PO for CCA over September 2013eNovember 2014, ignoring night values
(qz > 85�). Each marker is a single data point, and the line is a least-squares fit between
GHI and PO with a R2 value of 0.97.

Table 2
Day-ahead GHI forecast performance for CCA, from September 2013 to November
2014. Night values have been removed (night ≡ qz � 85�). No post-processing or
model output statistics (MOS) have been applied to the forecasts. The errors are
relative to the mean GHI of the considered period (515 Wm�2). Bold values indicate
best performances.

Method MAE [%] MBE [%] RMSE [%] s [e]

Persistence 24.9 7.7 36.2 e

RDPSCC 20.3 2.3 27.5 0.24
NAMGHI 21.9 �11.6 31.8 0.12

NAM*
GHI

20.5 �7.6 28.3 0.22

NAMCC 26.4 14.1 35.3 0.03

NAM*
CC

26.2 16.2 32.7 0.10
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where w is the weight vector, x is the input vector, x0 ¼ 1 by
convention, and n is the number of model parameters. Thenwe use
ordinary least-squares to find the optimal weights w*, i.e., the
weights that minimize the error between the predictor f(x;w) and
the true value y.

More specifically, for a given set of m example inputs {x(1), …,
x(m)} and outputs {y(1), …, y(m)}, the least-squares costs function is
defined as:

JðwÞ ¼
Xm
i¼1

�
f
�
xðiÞ;w

�
� yðiÞ

�2 ¼ kXw� yk22: (6)

The optimal weights w* are then the w that minimizes the cost
function:

w� ¼ min
w

kXw� yk22; (7)

where X2ℝm�n, w2ℝn, and y2ℝm.
For the purposes of this study, we use the predicted GHI (dGHI)

from one of the NWP models and zenith angle (qZ) as the model
inputs. I.e. n ¼ 2, x1 ¼ dGHI and x2 ¼ qz, where qz is included so that
temporal information is encoded into the model. Readers are
referred to [46] and [47] for more detailed studies into modeling of
PO of PV power plants.

4. Results and discussion

4.1. Error metrics

We use standard error metrics to evaluate the performance of
both the GHI and PO forecasts: Mean Absolute Error (MAE), Mean
Bias Error (MBE), Root Mean Square Error (RMSE), and skill (s) [7]:

MAE ¼ 1
N

XN
i¼1

jeij; (8)

MBE ¼ 1
N

XN
i¼1

ei; (9)
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

e2i

vuut ; (10)

s ¼ 1� RMSE
RMSEp

; (11)

where N is the number of forecasts, RMSEp is the RMSE of the
persistence forecast, and e is the error between the true value (y)
and forecasted value (by):
ei ¼ yi � byi: (12)

Additionally, for ease of comparison to previously published
results, we also include normalized RMSE (nRMSE):

nRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

�
ei
y

�2
vuut ; (13)

where y is the mean true value over the considered period, e.g.,
September 2013eNovember 2014.
4.2. GHI forecast performance

Day-ahead GHI forecast performance and statistics for CCA for
September 2013eNovember 2014 are shown in Table 2. As noted in
Section 3.3, the spatially averaged forecasts (NAM*

GHI and NAM*
CC)

use all NAM nodes within 100 km of the site. The best GHI forecast
is generated with RPDS, which reduces the RMSE 24% as compared
to the persistence model. NAMCC performs the worst, reducing
RMSE only by 3% compared to persistence. However, the results
presented are for GHI forecasts that have not undergone any post-
processing or model output statistics (MOS), which have been
shown to improve forecast performance (see Refs. [22,25]).

Without post-processing or MOS, the GHI forecasts underper-
form as compared to prior literature. Two of the most extensive
studies on day-ahead GHI forecasting are [27] and [26]. In Ref. [27],
the GEM NWP model is evaluated using seven SURFRAD Network
sites in the US and achieves RMSE values in the range of
z80e120 Wm�2 [26]. expands on [27] by providing results for a
variety of common NWPmodels, including GEM, ECMWF andWRF.
RMSE values reported in Ref. [26] are in the range of 70e200,
90e130, 80e115, and 95e135 Wm�2 for sites in the US, Central
Europe, Spain and Canada respectively. Unfortunately, neither
study directly evaluated RDPS or NAM.
4.3. Power output forecast performance

PO is forecasted for both CCA and LCC using the methods
described in Section 3. For the 18 months of overlapping data
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between the ground measurements and NWP models, odd months
are used for the training set and even months for the testing set.
Splitting the sets in this way, rather than in sequential partitions,
ensures that the models are trained on data from all four seasons.
Besides this monthly training, the effects of training on a full year of
data and testing on another full year are discussed in Section 4.4.

Fig. 5 shows three exemplary days of forecasted and measured
PO. The persistence model performs well on the first (clear) day,
with no visible difference to the measured PO, while both NWP-
based forecasts under-predict the PO. On the second exemplary
day, the NWP-based models perform better than on the first day,
but do not beat the persistence model. Since the persistence model
is just a repetition of the previous day, persistence works well if the
weather conditions between days do not change. Hence, persis-
tence also outperforms the NWPmodels because it inherits a better
representation of the temperature effects on the panels that are not
an input to the GHI to POmodel. However, the strength of the NWP
models is to predict cloud cover and irradiance attenuation, and are
hence performing better when conditions change between days.
The third exemplary day shows this effect, where the persistence
model under-predicts since the previous day (not shown) was
overcast. These results are expected and consistent with previous
findings on the performance of the persistence model [3,24].

Table 3 summarizes the PO forecast results and shows that all
three NWP-based forecast models perform comparably for both
sites (s ¼ 19�25%) and overall outperform the persistence model.
However, the persistencemodel has a lower absolute error than the
NWP-basedmodels for 47% and 49% of the data points in the testing
set for CCA and LCC respectively. This is likely a result of the
temperate climate at both sites, i.e., that both sites have an abun-
dance of periods where the weather conditions do not change and
therefore the persistence model will excel.

Given the significant variations in skill for the GHI forecasts
(s ¼ 10�24%), it might be surprising that all three PO forecasts
perform almost equally well. However, the training of the GHI to PO
model removes biases in the forecasts. This seems to be an
advantage of our proposed model compared to [27], where the
accuracy of the PV output prediction was strongly impacted by the
accuracy of the GHI input.
4.4. Interannual performance variability

While all previous work has only focused on bulk error statistics,
we also investigate the interannual performance variability. This is
important since meteorological studies have shown that there are
Fig. 5. Sample days where the NWP-based forecasts (RDPSCC and NAM*
GHI) for CCA pe
relatively strong interannual variations in many weather phe-
nomenon, e.g., DNI [48]. However, this variation is unknown for the
evaluation of PV PO. Quantifying this variation will enable us to
definewhat is a sufficient length of training and testing data sets for
PO forecasts.

We compare the PO forecast performance per year for
2011e2014. RDPSCC is used as the input source for the GHI to PO
model and themodel parameters are trained in the sameway as the
previous section. We use RDPSCC rather than NAMGHI and NAMCC
for two reasons. First, we have RDPSCC forecasts for the entirety of
2011e2014, but NAM forecasts only for September
2013eNovember 2014. Second, as discussed in the previous sec-
tion, the PO forecast performance is not strongly influenced by the
input GHI forecast. Hence, we assume that the interannual RDPSCC
forecast results in this section are representative of all evaluated
NWP-based models.

Table 4 shows the interannual performance variability of PO
forecasts for CCA and LCC over 2011e2014. The PO model is trained
separately on 2011, 2012, and 2013, and then tested on the subse-
quent years of data. For both CCA and LCC, the forecast performance
on the test set depends more on the test set itself rather than the
training set used. For example, the CCA forecast models trained on
2011, 2012 and 2013 achieved nRMSE values of 0.26, 0.30 and 0.28
respectively on the training set. But all three models achieved
nRMSE of 0.24 on the 2014 testing set. A similar trend is seen in the
2013 testing sets and the LCC forecasts.

Although there is no prior literature that reports day-ahead PO
forecast performance in our studied region of the American
Southwest, it is important to consider our results in the context of
other work. As noted in Table 4, our forecast methodology achieves
nRMSE values in the range of 0.24e0.33. [30,36,39] reported
nRMSE values in the range of 0.08e0.13, 0.26e0.35, and 0.10e0.30
respectively. Each study used at least 1 year of testing data, but the
21 PV systems in Ref. [30] had nameplate capacities of only
1e4 kWp. [36] and [39] evaluated forecasts with PV systems of total
capacity ~10 MWp, and achieved nRMSE values closer in range to
our results.

Error distributions are another important factor in evaluating
forecast performance. Fig. 6 shows the forecast error distributions
of three trainingetesting data sets and three sites: CCA, LCC and a
third fictional site denoted as “Combined”. The “Combined” site
allows us to consider the impact of pairing the two PV plants to
simulate a single, spatially distributed 2 MWp power plant. All
three sites and trainingetesting sets show similar distributions,
with peaks centered at less than zero error. 2012 and 2013 have a
rform (a) worse than; (b) as good as; and (c) better than day-ahead persistence.



Table 3
Day-ahead hourly PO forecasts for CCA and LCC, with MAE, MBE and RMSE reported as relative to the rated plant capacity of each site (1 MWp). The models were trained and
tested using hourly data from September 2013eNovember 2014, with odd months used for training and even months for testing.

Site Method Training Testing

MAE [%] MBE [%] RMSE [%] s [e] MAE [%] MBE [%] RMSE [%] s [e]

CCA Persistent 9.0 0.4 15.6 e 8.8 �0.5 14.7 e

RDPSCC 8.9 0.0 12.5 0.20 8.4 0.2 11.5 0.21
NAMGHI 9.6 �0.0 13.2 0.15 8.5 �0.3 11.3 0.23

NAM*
GHI

9.3 0.0 12.7 0.18 8.4 �0.2 11.0 0.25

NAMCC 9.2 �0.0 12.8 0.18 8.8 0.1 11.6 0.21

NAM*
CC

9.1 �0.0 12.5 0.20 8.5 0.4 11.2 0.23

LCC Persistent 8.0 0.3 14.0 e 7.2 �0.3 12.0 e

RDPSCC 7.7 0.0 11.1 0.21 7.3 0.6 9.8 0.19
NAMGHI 8.1 0.0 11.6 0.17 7.3 0.2 9.5 0.21

NAM*
GHI

8.0 0.0 11.2 0.20 7.2 0.3 9.3 0.23

NAMCC 8.1 0.0 11.4 0.18 7.7 0.4 9.8 0.18

NAM*
CC

8.0 0.0 11.2 0.20 7.3 0.6 9.5 0.21

Table 4
Interannual variability of NWP-based PO forecasts for CCA and LCC. RDPSCC is used as the NWP input for the forecast, with night values removed (night ≡ qz > 85�). The GHI-to-
PO model is trained on one year of data and then tested on a separate year. RMSE is reported as relative to the PV plant capacity (1 MWp for CCA and LCC) while nRMSE is
calculated using Equation (13) and the mean PO (PO) of the considered period. Higher forecast skills (s) indicate better performance.

Training Testing

Year PO [kW] RMSE [%] s [e] nRMSE [e] Year PO [kW] RMSE [%] s [e] NRMSE [e]

CCA:
2011 484 12.6 0.23 0.26 2012 466 14.0 0.17 0.30
2011 484 12.6 0.23 0.26 2013 476 13.7 0.15 0.29
2011 484 12.6 0.23 0.26 2014 481 11.7 0.23 0.24
2012 466 13.9 0.17 0.30 2013 476 13.6 0.16 0.29
2012 466 13.9 0.17 0.30 2014 481 11.7 0.22 0.24
2013 476 13.6 0.16 0.28 2014 481 11.7 0.23 0.24
LCC:
2011 397 11.3 0.20 0.28 2012 374 12.4 0.13 0.33
2011 397 11.3 0.20 0.28 2013 392 11.7 0.14 0.30
2011 397 11.3 0.20 0.28 2014 410 10.2 0.20 0.25
2012 374 12.2 0.15 0.33 2013 392 11.8 0.13 0.30
2012 374 12.2 0.15 0.33 2014 410 10.5 0.17 0.26
2013 392 11.7 0.14 0.30 2014 410 10.3 0.20 0.25
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higher occurrence of over-prediction (negative) errors than 2014.
In addition to the annual statistics and error distributions shown

in Table 4 and Fig. 6, it is useful to evaluate the error distributions
on shorter time scales. Fig. 7 examines the error distribution of both
sites broken down by the hour of the day and by the month of the
year for the 2014 testing set. Violin plots are used instead of box
plots to enable visualization of not only the error magnitudes, but
also their distribution densities [49]. From the hour of day
perspective, forecasts for both sites over-predict at sunrise and
sunset, and under-predict during the majority of the day. On the
monthly time scales, the forecasts tend to under-predict during the
rainy season (DecembereMarch), when the coastal areas are more
impacted by mobile mid-latitude weather systems and their asso-
ciated cloud patterns than by the diurnal pattern of marine stratus
coverage.

For system operators, over-prediction of power can be more
harmful than under-prediction due to the technical complexity
required for up-ramping of load following and backup units in the
power system, which is greater than for curtailing excess output
from intermittent producers. Meanwhile, for power producers,
curtailing solar PO is unfavorable as the power potential and profits
of the plant are reduced. To better understand the occurrence of
such errors, we analyze the severe over-prediction errors per year,
both on hourly and daily timescales.

Table 5 summarizes the occurrence of over-prediction errors
that exceed a range of thresholds, relative to the rated plant
capacity. We define over-prediction errors greater than 20% as se-
vere. Although both sites are approximately 7 km from the Pacific
Ocean and 13 km from each other, LCC has a lower frequency of
over-prediction events than CCA on both hourly and daily time-
scales. And this trend is consistent for all three years of testing data
(2012, 2013 and 2014).

The pairing of the two sites (“Combined”) has an impact on the
occurrence of sever over-predictions. On the hourly timescale, the
occurrence of severe over-prediction events for the “Combined”
site is reduced for all thresholds by 0.2e1.9% compared to CCA.
Similarly, daily over-prediction events are reduced by up to 2.5%.
These results indicate that the pairing of PV plants can enable
spatial smoothing of severe over-prediction events.
5. Conclusions

This study presented a methodology to generate day-ahead
power output forecasts for two PV plants in the American South-
west. The forecasts are based on publicly available numerical
weather prediction models from the National Oceanic and Atmo-
spheric Administration, and the Canadian Meteorological Centre.
Four years of groundmeasurements (2011e2014) from two 1MWp,
non-tracking PV plants in San Diego County, USA were used in this
study. Forecasts of the two sites achieved annual RMSE of
11.7e14.0% and 10.2e12.4% relative to the rated plant capacities
(1 MWp), as well as annual forecast skills of 15e23% and 13e20%.



Fig. 6. Power forecast error distributions for CCA (top row), LCC (middle row) and treating the two sites as one combined power plant (bottom row). The columns are for three
separate testing sets (2012, 2013, and 2014), with the PO forecast trained on the year prior to the testing set (e.g. 2012 was trained on 2011). As with Fig. 7, the error is calculated
using Equation (12) relative to the plant capacity, where negative errors are over-predictions (i.e. the forecasted PO was greater than the measured PO) while positive values are
under-predictions.

Fig. 7. Day-ahead PO forecast errors for CCA (left column) and LCC (right column), grouped by hour of the day (top row) and by month of the year (bottom row). The results here are
for the PO model trained on 2013 and then tested on 2014. Error is as defined in Equation (12) relative to the PV plant capacity. Therefore, negative error values are over-predictions
by the PO model and positive values are under-predictions. The dashed lines show the 25th, 50th, and 75th percentiles, while the width represents the density, which is
approximated using kernel density estimation (KDE).
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Our analysis leads to the following main conclusions:

1 Our proposed methodology can reduce the error in PV power
output forecasts for day-ahead market participation in San
Diego County, a key region for solar installations in the Amer-
ican Southwest.

2 Our methodology can be applied without any prior knowledge
of the NWP model that produced the input GHI forecast.
3 The interannual forecast performance variability depends more
heavily on the data set used in the performance evaluation
rather than the data set used in training the forecast model.

4 Evaluation of severe over-prediction errors should be consid-
ered when evaluating day-ahead PO forecasts. Ourmethodology
results in severe (>20% of the nameplate capacity) hourly over-
prediction errors less than 9% of the time over three years for
both sites. However, the occurrence of such severe over-
predictions may be larger for other sites.



Table 5
Occurrence of over-prediction errors that exceed 20%, 30%, 40%, and 50% of the plant
capacity. The year denotes the year used for testing, with the previous year used for
training. “Hourly” are the number of hourly data points, “Daily” are the number of
days where the average of the hourly forecasting errors within each day exceed the
threshold, and the values in parentheses are occurrences relative to the total number
of data points [%]. 2012 and 2013 had approximately 4000 hourly and 365 daily data
points per site, while 2014 had approximately 3600 hourly and 320 daily data points
per site. “Combined” represents the scenario in which CCA and LCC are treated as a
single, spatially distributed 2 MWp power plant.

Error Hourly Daily

CCA LCC Combined CCA LCC Combined

2012:
>20% 347 (8.6) 272 (6.7) 288 (7.1) 22 (6.0) 18 (4.9) 21 (5.7)
>30% 182 (4.5) 146 (3.6) 154 (3.8) 11 (3.0) 7 (1.9) 8 (2.2)
>40% 100 (2.5) 73 (1.8) 83 (2.1) 1 (0.3) 0 (0.0) 0 (0.0)
>50% 53 (1.3) 22 (0.5) 35 (0.9) 0 (0.0) 0 (0.0) 0 (0.0)
2013:
>20% 302 (7.6) 208 (5.2) 228 (5.7) 17 (4.7) 7 (1.9) 8 (2.2)
>30% 143 (3.6) 85 (2.1) 100 (2.5) 4 (1.1) 0 (0.0) 2 (0.5)
>40% 66 (1.7) 28 (0.7) 39 (1.0) 0 (0.0) 0 (0.0) 0 (0.0)
>50% 24 (0.6) 6 (0.2) 14 (0.4) 0 (0.0) 0 (0.0) 0 (0.0)
2014:
>20% 212 (5.9) 162 (4.5) 168 (4.7) 10 (3.1) 7 (2.2) 8 (2.5)
>30% 85 (2.4) 61 (1.7) 69 (1.9) 2 (0.6) 2 (0.6) 2 (0.6)
>40% 38 (1.1) 27 (0.8) 30 (0.8) 1 (0.3) 0 (0.0) 0 (0.0)
>50% 21 (0.6) 13 (0.4) 16 (0.4) 0 (0.0) 0 (0.0) 0 (0.0)
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5 Spatial smoothing of over-prediction errors is possible through
pairing of two spatially-distributed PV plants.

Additionally, in order to reduce the obstacles to safe and eco-
nomic operation of solar power, research should shift focus towards
power output forecasting. While improving irradiance prediction
accuracy is important for many applications, our results suggest
that for the day-ahead power forecasts, statistical methods can
compensate for systematic errors in the irradiance predictions and
are suitable for modeling the complexity of power plant operations.
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